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Abstract  
 

Cyanotoxins, the metabolites synthesized by cyanobacteria, have a significant impact on ecosystems and are important in pharmaceutics. Cyanotoxins are of 
diverse chemical nature, including peptides, alkaloids, etc. and are found in various aquatic and terrestrial habitats. We investigated the presence of 
cyanotoxins in the cyanobacteria Nostoc fuscescens from a seasonal water spring situated in the northern Western Ghats, India. We identified cyanotoxins in 
N. fuscescens blooms using LC-HRMS analysis. We detected the presence of four cyanotoxins: Microcystin, Nodularin, Cylindrospermosin, and Anatoxin. 
Additionally, we also identified four variants of Microcystin. The results revealed that N. fuscescens contains different cyanotoxins with multiple structural 
variants. These results highlight the potential of cyanobacteria on wet rocks in seasonal spring to produce cyanotoxins of diverse chemical nature, that can be 
explored further for bioprospection.  
 
Keywords: Water spring; Cyanotoxins; Nostoc fuscescens; Microcystin. 

 

1. Introduction  
 

Cyanobacteria, or blue-green algae, are among the oldest 
autotrophic life forms with cosmopolitan distribution and can be 
found in different habitats, including Antarctic lakes and thermal 
springs. Under certain conditions like eutrophication, 
cyanobacteria massively bloom in response to increased 
temperature and nutrients such as phosphorus. Cyanobacterial 
blooms have long-term ecological and economic consequences 
(Huisman et al., 2018). The expansion of cyanobacterial blooms 
has a significant impact on water quality, biodiversity, and 
ecosystem functioning (Sukenik et al., 2015; Amorim and Moura, 
2021). For example, cyanobacteria increase phytoplankton 
diversity and richness while decreasing zooplankton diversity 
(Amorim and Moura, 2021). The toxins produced by cyanobacteria 

can have unbearable consequences on human health and aquatic 
fauna (Zanchett and Oliveira-Filho, 2013; Otero and Silva, 2022). 
Additionally, cyanobacteria have been of great interest due to their 
potential to produce cyanotoxins of diverse chemical nature. 
Cyanotoxins, secondary metabolites produced by cyanobacteria, 
play a significant role in their physiology, especially during 
environmental stress (Kaebernick and Neilan, 2001; Downing et 
al., 2015). 
 
Although they are harmful chemicals by nature, cyanotoxins are 
becoming pharmaceutically important compounds as many of 
them have anticancer, antimicrobial properties, and other biocidal 
properties (Dias et al., 2015; Vijayakumar and Menakha, 2015; 
Ricciardelli et al., 2023). Cyanotoxins are categorized based on 
their functional or toxicological properties, such as hepatotoxins, 
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Table 1. Details of the tests performed to detect the presence of various chemicals. 
 

Phytoconstituents Method Presence/ absence 

Glycosides 
  

I) cardiac glycosides Keller-kiliani test Present 

Ii) anthraquinon glycosides Borntrager's test Absent 

Iii) saponin glycosides Olive oil method Absent 

Iv) coumarin glycosides Sodium hydroxide method Present 

V) cyanogenetic glycosides Picrate-impregnated paper Absent 

Alkaloids Dragendorff”s test, mayer’s test, hager’s test Present 

Flavonoids Alkaline reagent test and shinod’s test Present 

Tannins and phenolic compounds Ferric chloride test and lead tetra acetic acid test Present 

Steroids Chloroform and h2so4 test Absent 

Proteins Biuret test and ninhydrin test Absent 

Carbohydrates Molish test and benedict’s test Present 
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neurotoxins, cytotoxins, etc. (Chorus and Welker, 2021a). 
Cyanotoxins are of diverse chemical natures including peptides, 
alkaloids, lipopolysaccharides etc. (Vijayakumar and Menakha, 
2015; Ricciardelli et al., 2023). Microcystins, one of the major 
hepatotoxins are one of the major group of cyanotoxins with more 
than 250 structural variants (Bouaïcha et al., 2019; Chorus and 
Welker, 2021b). Another hepatotoxic cyanotoxin, Nodularins are 
monocyclic peptides have low structural diversity (Melaram et al., 
2024; Catherine et al., 2016). Alkaloid cyanotoxins such as 
Anatoxin A and Cylindrospermopsin have toxic effects on nervous 
system and skin (Chorus and Welker, 2021b).   
 
Detection and quantification of cyanotoxins are challenging as 
many of them have diverse structural variants and their standards 
are not available (Kaushik and Balasubramanian, 2013; Moreira et 
al., 2014). Novel variants of cyanotoxins are being described in the 
literature (Kust et al., 2018; Johansson et al., 2019). Moreover, 
many cyanobacterial species from different habitats (such as 
terrestrial) are yet to be investigated for the presence of toxins. 
Previous studies were mainly focused on the detection of 
cyanotoxins from aquatic (marine and freshwater) ecosystems 
(Filatova et al., 2020; Zhang et al., 2023). However, terrestrial 
habitats such as rocks in seasonal springs are largely neglected 
(Dulić et al., 2022). In the present study, we investigated the 
presence of cyanotoxins in the cyanobacteria Nostoc fuscescens 
from the wet rock surfaces in the seasonal water spring in the 
northern Western Ghats of India. We detected the presence of 
cyanotoxins and identified them using LC-HRMS analysis.   
 

2. Material and method 
 

2.1. Collection and identification of Nostoc Species  
 

Greenish-brown biofilms were collected in the post-monsoon 
season (September - October) from the moist rocks near the 
waterfall situated in the hills around Yavteshwer village (Satara, 
Maharashtra, India; Figure 1). The biofilms were collected in the 

beakers using a sterile knife and brought to the laboratory. The 
collected samples were observed under the microscope (Olympus 
CX41) for morphological characterization and purity (Figure 2). 
Pure colonies were isolated and cultured by using BG11 media 
(Rippka et al., 1979). Identification was done following the keys by 
(Komárek, 2013). 
 
2.2. Preparation of extract 
 

The freshly collected samples were washed under tap water and 
cleaned thoroughly to remove soil particles and debris, if any. Then 
the samples were dried under the shed for two weeks (Figure 1 and  
Figure 2) and ground into powder using a grinder. The powder was 
then sieved through a 0.2 mm strainer. Five grams of the powder 
was 50 ml methanol and kept in the shaker at 60 rpm/min and 25 
ºC temperature. After 24 h the extract was filtered through 
Whatman filter paper no.3. The filtrate was dried under reduced 
pressure using a rotary evaporator (Tripathi et al., 1996). The dried 
extract was used for Cyanotoxin detection. 
 
2.3. Phytochemical analysis of algal extract 
 

The qualitative phytochemical analysis of crude extract was 
performed following the standard methods described by (Brain and 
Turner, 1975; Evans, 2009; Kokate, 2014). The presence of 
Glycosides, alkaloids, flavonoids, fats and oil, carbohydrates, 
proteins, steroids, Tannins and Phenolic compounds was 
determined (Table 1). 
 
2.4. Thin Layer Chromatography 
 

Dried extract (in the form of spots) was applied on a silica-coated 
glass plate and developed using ethyl acetate as a solvent. After spot 
development, the plate was dried at room temperature for 5 min to 
evaporate the remaining solvent. The spots were visualized under 
UV light. The plate was then placed in the chamber with iodine 
vapour and the positions of the spots were marked. The spots were  
 

Figure 1. Map showing the geospatial location of collection site, Yevateshwar waterfall in Satara district, Maharashtra, India (A) 
and seasonal waterfall (B) 

 

Journal of Bioresources 13 (2): 05–11                                                                                                                                                                              Gaikwad et al., 2025 

 



7 

 

scraped off, dissolved in 2 ml methanol and used for HR-MS 
analysis. 
 
2.5. High-Resolution Mass Spectrum (HRMS) analysis 
  
HRMS analysis was performed by direct infusion of 20 µl aliquots 
into the electrospray ionization (ESI) chamber at the rate of 0.120 
min -1. The mass spectra of the sample were recorded on a Bruker 
impact HD Q-TOF spectrometer (Bruker Daltonics, Billerica, MA,  

 
USA). The parameters of the mass spectrum were as follows: 
Source type- ESI, Focus- Active, Scan- 50-1500m/z, ion polarity-
Positive, Set capillary-4500V, Set end plate offset- -500V, Set 
charging voltage- 2000V, Set nebulizer- 1.7 Bar, Set dry heater- 
200 ºC, and Set dry gas 7.0 L/min. The mass was confirmed by m/z  
ratio of the sample with the reference standards. Four cyanotoxins 
were identified by comparing their m/z ratio with their standard.  
 

Table 2. Cynotoxins with their fragment ions detected in the algal extract. 

  M/Z Fragment assignment Reference 

Anatoxin-A 166.08 M+H (Zervou et al., 2017) 

 130.1 M-NH4OH  

Cylindrospermopsin 415.41 M+H (Kokociński et al., 2009) 

 365.1 M-H2SO  

 381.07 M-H2S  

Microcystin-LR 917.59 M-135 (Benke et al., 2015) 

 599.44 Agr-Adda-Glu+H  

Microcystin-WA 475.32 Ala-Trp-MaSp-Z+NH4 (Puddick et al., 2013) 

Microcystin-NfKA 665.26 Adda-Glu-Mdha-Ala-X+H (Puddick et al., 2013) 

Microcystin- HphR 1057.44 Asp3, ADMAdda5 (Kaasalainen et al., 2012) 

Nodularin 839.5 M+H (Meriluoto et al., 2016) 

 775.53 M-OMe  

  791.51 M-NH2-C=NH-NH3   

 
 
 
 

 
Figure 2. (A) Habitat explored for the Collection of Nostoc fuscescens, (B) Nostoc fuscescens in natural habitat, (C) Microscopic 

details of N. fuscescens (100x), and (D) Drying of N. fuscescens bloom for preparation of methanolic extract. 
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3. Results  
 

Preliminary analysis revealed the presence of alkaloids, flavonoids, 
fats, proteins, and different glycosides in the methanolic extract of 
N. fuscescens (Table 1). LC-HRMS analysis by direct infusion 
experiment provided fragmentation curves for selected precursor 
ions. Based on the literature and LC-HRMS analysis molecular 
structures were attributed to the most intense fragments. The LC-
HRMS analysis confirmed the presence of four cyanotoxins 
Anatoxin-a (ANA), Cylindrospermopsin (CYN), Microcystins 
(MCs) and Nodularin (NOD). Anatoxin-a forms [M+H] + precursor 
ion at m/z 166.08 with fragment ion m/z 130.10 which is the most 
intense fragment ion (Table 2; Figure 3). Cylindrospermopsin 
(CYN) forms [M+H] + precursor ion at m/z 416.41 with two product 
ions which are m/z 365.10 and m/z 381.07 (Table 2; Figure 3). 
Nodularin (NOD) forms [M+H] + precursor ion at m/z 839.50 with 
two fragment ions which are m/z 791 and m/z 775.53 (Figure 3). A 
total of four variants of microcystin were identified; Microcystin-
LR at m/z 917.59 (m-135) with fragment ion 599.44 this fragment 
ion is associated with Adda moiety (Figure 4). Microcystin-WA at 
m/z 475.32 (Ala-Trp-MaSp-Z+NH4), Microcystin-NfKA at m/z 
665.26 (Adda-Glu-Mdha-Ala-X+H), and Microcystin- HphR at 
m/z 1057.44 (Table 2; Figure 4). 
 

4. Discussion 
 

In the present study, we reported four cyanotoxins, Microcystin, 
Nodularin, Cylindrospermocin, and Anatoxin in the cyanobacteria 
from the wet rock surface in the seasonal water spring. Microcystin 
is one of the most common toxins in cyanobacteria from diverse 
habitats including hypersaline water, soil, hot springs, etc. (Chorus 

and Welker, 2021b). Microcystin was also detected in the Nostoc 
strains which are symbionts of lichen (Oksanen et al., 2004). 
Nodularin is reported from seawater, brackish water, and coastal 
freshwater lakes (Bolch et al., 1999; Akcaalan et al., 2009). Similar 
to Microcystin, nodularin is also reported from the Nostoc 
symbiont of lichen (Gehringer et al., 2012). Among cyanotoxins 
detected in the present study, all of them are reported in Nostoc 
species (Ghassempour et al., 2005; Kinnear, 2010; Chorus and 
Welker, 2021b). Cylindrospermopsin were detected from 
freshwater and brackish water cyanobacteria (Kinnear, 2010; 
Rzymski and Poniedziałek, 2014). Anatoxin was reported from 
freshwater cyanobacteria (Christensen and Khan, 2020) including 
Nostoc carneum species (Ghassempour et al., 2005). These 
observations imply that compared to other cyanobacteria N. 
fuscescens produces diverse cyanotoxins. The present study for the 
first time reports the presence of four cyanotoxins from the wet 
rocks surface in the seasonal spring. 
 
In the present study, we detected four variants of Microcystin. 
Previous studies have reported 2-3 variants of Microcystin in a 
single species of cyanobacteria (Bouaïcha et al., 2019; Chorus and 
Welker, 2021b). Among Microcystin variants, MC-LA is relatively 
abundant in different species of cyanobacteria (Bouaïcha et al., 
2019; Chorus and Welker, 2021a). In the present study, we could 
detect three rare variants of Microcystin MC-WA, MC-NfkA, and 
MC-HphR. All these Microcystin variants were reported from 
freshwater cyanobacteria (Puddick et al., 2013; Bouaïcha et al., 
2019).  
 

 

Figure 3. LC-HRMS Spectrogram showing chromatographic and mass spectrometric analysis of (A) Anatoxin-A, (B) 
Cylindrospermopsin, and (C) Nodularin 
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Cyanobacterial toxins evolved as a cellular defence mechanism in 
response to resource competition and maintain physiological  
homeostasis (Holland and Kinnear, 2013). The detection of toxins 
in the cyanobacteria from diverse habitats (including marine, 
freshwater and terrestrial) (Gómez-Leyva et al., 2024; Jablonska et 
al., 2024; Sahu et al., 2024) highlights their importance in 
physiological functioning. In the present study, we detected 
cyanotoxins in N. fuscescens from wet rocks around the seasonal 
water springs. Additionally, the spring investigated in the present 
study remains dry for at least six months. The presence of diverse 
cyanotoxins in N. fuscescens suggests their possible role in 
maintaining physiological balance under changing environmental 
conditions (Holland and Kinnear, 2013).  
 
Detection of cyanotoxins has limitations due to the unavailability 
of standards as quantitative methods such as LC-MS/MS rely on 
analytical standards for accurate quantification. Therefore, diverse 
chemical methods have been employed to identify cyanotoxins and 
their variants in environmental samples. Cyanotoxins can be 
identified using LC-MS or LC-MS/MS method even when 
standards are not available (Kaushik and Balasubramanian, 2013; 
Moreira et al., 2014). Liquid chromatography (LC) coupled with 
HRMS is increasingly used for quantitative and qualitative analysis 
of cyanotoxins (Panda et al., 2022; Sundaravadivelu et al., 2022). 
In the present study, we detected diverse cyanotoxins using LC-
HRMS analysis.  
 
Currently, cyanotoxins of diverse chemical nature are being 
increasingly detected in freshwater and pose a significant threat to 

humans and wildlife (Stewart et al., 2008; Zanchett and Oliveira-
Filho, 2013; Ash and Patterson, 2022). The changing environment 
due to global warming is facilitating cyanobacterial growth which 
may have adverse effects on not only aquatic fauna but also 
terrestrial animals (Paul, 2008; Visser et al., 2016). Seasonal water 
springs in the Western Ghats drain flow to the water reservoirs 
which are the major source for urban population and agriculture. 
Therefore, detection and identification of cyanotoxins from diverse 
habitats using advanced methods is necessary. The present study 
highlights the necessity of cyanotoxin detection in neglected 
habitats.  
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